A Field Experiment on Search Costs and the Formation of Scientific Collaborations

Boudreau K, Brady T, Ganguli I, Gaule P, Guinan EC, Hollenberg T, and Lakhani KR
Scientists typically self-organize into teams, matching with others to collaborate in the production of new knowledge. We present the results of a field experiment conducted at Harvard Medical School to understand the extent to which search costs affect matching among scientific collaborators. We generated exogenous variation in search costs for pairs of potential collaborators by randomly assigning individuals to 90-minute structured information-sharing sessions as part of a grant funding opportunity for biomedical researchers. We estimate that the treatment increases the baseline probability of grant co-application of a given pair of researchers by 75% (increasing the likelihood of a pair collaborating from 0.16 percent to 0.28 percent), with effects higher among those in the same specialization. The findings indicate that matching between scientists is subject to considerable frictions, even in the case of geographically-proximate scientists working in the same institutional context with ample access to common information and funding opportunities.

Acyldepsipeptide Antibiotics Kill Mycobacteria by Preventing the Physiological Functions of the ClpP1P2 Protease

Famulla K, Sass P, Malik I, Akopian T, Kandror O, Alber M, Hinzen B, Ruebsamen-Schaeff H, Kalscheuer R, Goldberg AL, and Brötz-Oesterhelt H
The Clp protease complex in Mycobacterium tuberculosis is unusual in its composition, functional importance and activation mechanism. Whilst most bacterial species contain a single ClpP protein that is dispensable for normal growth, mycobacteria have two ClpPs, ClpP1 and ClpP2, which are essential for viability and together form the ClpP1P2 tetradecamer. Acyldepsipeptide antibiotics of the ADEP class inhibit the growth of Gram-positive firmicutes by activating ClpP and causing unregulated protein degradation. Here we show that, in contrast, mycobacteria are killed by ADEP through inhibition of ClpP function. Although ADEPs can stimulate purified M. tuberculosis ClpP1P2 to degrade larger peptides and unstructured proteins, this effect is weaker than for ClpP from other bacteria and depends on the presence of an additional activating factor (e.g. the dipeptide benzyloxycarbonyl-leucyl-leucine in vitro) to form the active ClpP1P2 tetradecamer. The cell division protein FtsZ, which is a particularly sensitive target for ADEP-activated ClpP in firmicutes, is not degraded in mycobacteria. Depletion of the ClpP1P2 level in a conditional Mycobacterium bovis BCG mutant enhanced killing by ADEP unlike in other bacteria. In summary, ADEPs kill mycobacteria by preventing interaction of ClpP1P2 with the regulatory ATPases, ClpX or ClpC1, thus inhibiting essential ATP-dependent protein degradation.