High-throughput mediation analysis (Hitman) of human plasma proteome and metabolome identifies mediators of post-surgical diabetes control

Jonathan Dreyfuss, PhD
Instructor in Medicine
Co-Director
Bioinformatics & Biostatistics Core
Joslin Diabetes Center

Goal

- Identify if any analyte changes are part of the mechanism of RYGB, and so can be modulated non-surgically to improve diabetes control
- So want mediation analysis

Linear structural equation model (SEM)

- Linear SEM per mediator:
 - $E = v_0 + U_F \tag{1}$
 - $M = \alpha_0 + \alpha_1 E + U_M \qquad (2)$
 - $-Y=\theta_0+\theta_1E+\theta_2M+U_v \quad (3)$
- Indirect or mediation effect = $\alpha_1 \theta_2$
- Direct effect = θ_1

Mediation approaches

- Joint significance (JS) method tests α_1 =0 & θ_2 =0, so p=max(p₁, p₂)
- Product method tests $\alpha_1\theta_2=0$
- Difference in coefficient method considers the model $Y=\lambda_0+\lambda_1E+U_v$ and tests $\lambda_1-\theta_1=0$
- Bootstrap method tests $\alpha_1\theta_2=0$ by comparing product to bootstrapped products
- Potential outcome-based method tests difference of potential outcomes between having Δanalyte from RYGB vs Δanalyte from DWM. Tests with bootstraps or other sampling.

Two comparisons chose JS test

- MacKinnon DP, Lockwood CM, Hoffman JM, West SG, Sheets V. A comparison of methods to test mediation and other intervening variable effects. *Psychol Methods*. 2002;7(1):83–104.
- Barfield R, Shen J, Just AC, et al. Testing for the indirect effect under the null for genome-wide mediation analyses. *Genet Epidemiol*. 2017;41(8):824–833.

Drawbacks of joint significance test

- Not designed for omics datasets, so doesn't exploit empirical Bayes modelling of analyte's variance, e.g. with the linear modeling R package limma
- Does not penalize *inconsistent* mediators, where $\alpha_1 \& \theta_2$ are significantly different from 0, but direction of mediation is not consistent with direction of total effect of E on Y

Hitman: limma

- Limma models analyte abundance as dependent variable
- Can test α_1 in M= α_0 + α_1 E+U_M (eqn 2)
- Can't test θ_2 in Y= θ_0 + θ_1 E+ θ_2 M+U_Y (eqn 3)
- Instead, regress $Y = \lambda_0 + \lambda_1 E + \epsilon_Y$
- Then test θ_2 =0 with limma in u_M = ϵ_Y * θ_2 + ϵ

Hitman: direction

- Considers direction of effect, allowing "one sided" testing
 - If consistent, $p_{Hitman} = p_{JSL}/2$
 - Else, $p_{Hitman} = 1 p_{JSL}/2$
 - So, retinol $p_{Hitman} = 0.97$
- p_{JSL} is joint significance implemented with limma

Simulation settings

- Simulations followed those of Barfield et al. & Mackinnon et al.
- We simulated all combinations of α_1 , θ_2 in (0, 0.14, 0.39), which correspond to "zero", "small," and "medium" effect size
- We tested in what proportion of 10,000 simulations with 50 samples the mediator achieved a p-value 0.05

Simulation results

```
        01
        02
        Hitman
        joint
        mediate

        0
        0
        0.0057
        0.0022
        0.002

        0
        0.14
        0.0124
        0.0062
        0.005

        0.14
        0
        0.0157
        0.008
        0.007

        0
        0.39
        0.0399
        0.0364
        0.03

        0.39
        0
        0.0477
        0.0375
        0.028

        0.14
        0.14
        0.0629
        0.0232
        0.015

        0.14
        0.39
        0.206
        0.1084
        0.103

        0.39
        0.14
        0.2067
        0.1112
        0.127

        0.39
        0.39
        0.6824
        0.5389
        0.574
```

Few mediation methods for highthroughput

- They try to remove confounding by decomposing measured analytes into latent, independent mediators
- But latent variables are hard to interpret & confounders often unmeasured

SLIMM-T2D Analyte mediators

- Top protein mediator
 - Growth Hormone Receptor (GHR)
- Top metabolite mediator
 - Proline-hydroxyproline
- These have stronger p-value than body mass index (BMI)
- These are consistent with previous findings, but more experiments needed to confirm their role as mediators

Hitman limitations

- There are possible confounders that affect both U_M and U_γ, so Hitman, like other mediation analyses, is exploratory
- Based on linear SEM, so assumes Y (perhaps after being transformed) can be modeled by linear regression model with additive E and M

Conclusion

- Hitman improves on best-in-class joint significance method for high-throughput mediation analysis
- Hitman identifies robust mediators of gastric bypass, which can be further experimentally assayed and possibly serve as future nonsurgical therapeutic targets

|--|